Filling in the Blanks: Multiple Imputation with R’s MICE Package

Introduction

Missing data is a common challenge in statistical analysis and can lead to biased results if not handled properly. Multiple imputation is a powerful technique used to address this issue by creating multiple complete data sets from the incomplete data. Each data set is analyzed separately, and the results are combined to produce estimates that account for the uncertainty due to missing data (Figure 1).

Figure 1

In this article, we will walk through a step-by-step guide on how to perform multiple imputation using the mice (Multivariate Imputation by Chained Equations) package in R (Buuren and Groothuis-Oudshoorn 2011). We will use a simulated data set involving a streaming service survey, which includes variables such as age, satisfaction, and service reliability.

Step-by-Step Guide to Multiple Imputation

Step 1: Install and Load the mice Package

Load the mice package for multiple imputation, the tidyverse for data manipulation and visualization, and the naniar package for visualizing missing data:

Code
if (!require("pacman")) install.packages("pacman", quiet = T)
pacman::p_load(tidyverse, mice, naniar)

Step 2: Explore the Data

This article examines a simulated data set that captures user feedback for a TV streaming service, featuring seven key variables that provide insights into customer experiences:

  1. Age: User’s age in years
  2. Satisfaction: Overall satisfaction score (0-100)
  3. Service Reliability: Score for service dependability (0-100)
  4. Value for Money: Score reflecting perceived value (0-100)
  5. Program Variety: Score reflecting perceived program variety (0-100)
  6. Premium Subscriber: Yes/No - Is the user a premium subscriber?
  7. Premium Duration: Months as a premium subscriber (if applicable)

Our primary objective is to identify the factors that most significantly predict customer satisfaction with the streaming service. To achieve this, we will employ linear regression analysis, allowing us to quantify the relationship between the various independent variables and the overall satisfaction score.

Code
data |> 
  flextable::flextable() |> 
  flextable::autofit() |> 
  flextable::set_table_properties(
    opts_html = list(
    scroll = list(
      height = "300px",
      freeze_first_column = TRUE
    )
  )
)

id

age

sat

ser_rel

vfm

pro_var

prm_sub

prm_dur

1

23.62

65.65

12.23

17.72

No

2

57

67.48

59.81

53.72

No

3

36.83

51

59.78

57.71

19.92

No

4

26.25

64

49.77

62.50

No

5

48.69

27.18

62.29

33.99

No

6

36.56

71

45.55

61.73

Yes

52

7

77

27.69

24.77

21.44

Yes

36

8

29.00

94

14.16

66.78

Yes

45

9

27.30

52

7.60

31.96

14.82

No

10

39.87

58

63.83

40.83

52.92

No

11

29.60

66

27.28

49.69

14.40

No

12

23.94

12.04

7.46

23.86

Yes

88

13

52.62

64

84.16

62.21

72.05

Yes

12

14

48.99

45.53

47.85

Yes

28

15

45.72

32

60.84

48.88

46.74

No

16

24.87

96

24.28

42.93

62.49

Yes

104

17

51.58

63

35.02

46.56

76.16

Yes

69

18

52.40

51

69.86

90.55

123.17

No

19

87.09

28

80.75

78.64

86.77

No

20

39.37

50

25.35

31.07

26.38

No

21

47.04

59

75.16

40.24

50.22

No

22

60.91

47

75.40

81.00

75.34

No

23

50.46

45

70.49

53.52

31.55

No

24

26.97

94

61.90

10.23

28.72

Yes

106

25

19.46

69

17.28

17.59

32.81

No

26

51.54

52

60.81

39.50

67.12

No

27

45.39

39

41.94

41.63

78.14

No

28

81.25

20

80.08

51.50

83.75

Yes

3

29

34.50

69

29.34

42.57

59.86

Yes

4

30

42.49

49

46.91

69.10

68.30

No

31

28.41

77

50.94

44.76

42.76

Yes

21

32

30.55

77

44.57

35.52

Yes

36

33

23.03

42.07

43.38

No

34

59.98

72

56.77

52.27

Yes

81

35

39.88

85

34.83

38.70

52.15

Yes

90

36

63.11

82

81.26

Yes

107

37

54.94

76

83.66

63.90

37.48

Yes

88

38

45.58

45

64.15

78.18

No

39

92.99

23

58.33

75.90

104.19

No

40

50.31

37

35.30

37.12

No

41

47.85

47

29.39

66.03

39.22

No

42

49.01

68

41.85

65.74

56.69

Yes

111

43

70

21.23

51.30

42.33

No

44

56.46

27

21.18

72.43

No

45

64.72

41

71.26

58.89

No

46

65

43.29

31.02

No

47

49.20

53

75.62

54.36

Yes

12

48

38.15

43

16.12

36.39

24.06

No

49

34.69

65

Yes

72

50

53.57

32

41.33

31.04

35.29

No

51

39.66

48.95

37.15

50.41

Yes

102

52

55.52

48

47.98

68.96

Yes

23

53

89

28.32

Yes

85

54

29.18

81

52.17

37.54

38.47

Yes

0

55

39.01

81

56.15

21.18

72.36

Yes

111

56

49

49.73

33.45

Yes

23

57

55.68

52

41.67

23.46

No

58

34.65

47

47.36

32.06

No

59

81.54

36

75.74

89.91

113.25

No

60

37.03

63

68.82

30.64

42.59

No

61

48.85

91

50.14

Yes

84

62

44.99

45.52

35.61

No

63

82

44.52

29.52

54.19

Yes

108

64

29.80

67

23.41

21.60

40.95

No

65

65.71

22

19.40

104.93

44.28

No

66

18.38

87

30.54

36.55

Yes

46

67

36.40

71

47.04

28.92

Yes

22

68

32.97

35

10.23

47.40

43.65

No

69

37.13

53

43.89

38.69

No

70

35.61

57

31.37

41.36

No

71

60.78

44

83.93

81.15

28.94

No

72

43.77

90

55.45

62.40

37.46

Yes

82

73

37.72

49

29.68

46.50

44.59

No

74

54.73

63

65.82

72.55

Yes

85

75

59.11

58.58

56.64

Yes

106

76

44.57

52

52.76

26.33

40.38

No

77

34.65

36

37.16

50.83

28.22

No

78

48.88

42

11.18

37.61

70.16

No

79

54.83

50

43.52

58.83

No

80

61.53

70

51.57

64.37

77.89

Yes

97

81

28.71

86

34.33

25.62

21.83

Yes

67

82

35.03

68

44.13

58.91

No

83

49.21

32

38.03

57.97

44.38

No

84

71

45.01

71.49

52.25

No

85

71.52

93.62

44.80

No

86

41.85

75

27.71

43.02

47.26

Yes

20

87

57.69

47

43.90

78.47

27.81

No

88

31.34

43.56

62.93

62.40

No

89

42.73

78

14.11

37.85

47.52

Yes

24

90

22.83

55.81

25.49

42.79

No

91

20.91

65

50.57

Yes

53

92

57

61.41

53.01

66.49

No

93

34.15

39

33.46

53.91

35.07

No

94

27.14

68

26.37

45.89

No

95

61.12

51

67.93

63.35

Yes

47

96

50.55

58

68.42

40.99

No

97

58.27

41

83.62

59.72

57.24

No

98

64.26

67

74.02

88.64

49.57

Yes

91

99

33.92

87

49.69

63.52

40.44

Yes

44

100

32.17

64

79.58

30.73

17.16

No

101

42.06

37

20.23

39.57

26.71

No

102

3.44

100

37.75

58.06

Yes

110

103

64.17

58

53.70

67.32

65.88

Yes

52

104

57

19.74

30.67

10.14

Yes

1

105

64.90

66

63.91

59.79

45.90

Yes

53

106

39.41

75

55.53

52.79

40.19

No

107

56.65

53.10

57.22

No

108

46.66

47

39.02

51.30

No

109

36.89

78

65.08

45.53

36.31

No

110

48.55

51

59.69

44.38

36.94

No

111

47.07

59

39.09

48.81

60.16

Yes

18

112

39.74

80

59.28

54.09

35.04

Yes

83

113

64.40

57.07

53.55

No

114

48.41

75

52.63

49.51

Yes

78

115

68.32

31

73.79

81.28

64.51

No

116

46.98

62

39.38

70.93

Yes

67

117

38.22

87

72.27

58.73

52.00

Yes

92

118

14.43

56

23.15

3.83

No

119

57.09

72

77.41

68.84

66.76

Yes

56

120

50.94

65

69.52

48.70

20.75

Yes

17

121

49.09

54.20

89.16

No

122

45.02

57

97.86

71.05

60.77

No

123

39.14

60

31.25

No

124

49.34

56

58.21

65.46

74.80

Yes

25

125

50.06

37

44.57

55.80

44.58

No

126

31.10

53

51.58

61.66

No

127

40.80

53.52

58.95

72.31

No

128

67.17

64

86.68

68.83

84.94

Yes

62

129

50.77

47

56.45

71.11

81.56

No

130

39.95

51

45.44

52.63

No

131

26.09

61

43.47

64.69

25.67

No

132

42.07

57.83

58.69

No

133

35.64

90

55.16

66.41

35.34

Yes

119

134

16.07

92

61.82

25.31

26.98

Yes

31

135

30.21

66

22.53

37.71

No

136

51.17

57

55.58

74.40

72.09

No

137

40.94

78

64.37

60.56

Yes

65

138

40.49

92

28.50

24.90

Yes

101

139

55.92

59

57.96

37.29

70.58

Yes

10

140

38.72

57

61.02

68.34

No

141

51.89

45

28.81

86.19

31.67

No

142

51.89

88

78.40

75.12

38.88

Yes

114

143

45.64

46

63.80

39.04

No

144

46.75

72

63.35

57.53

Yes

92

145

49.63

61

46.92

37.24

82.79

No

146

28.25

68

8.86

34.92

57.17

Yes

61

147

46.89

91

50.57

62.36

59.96

Yes

106

148

51.98

33

51.07

72.57

No

149

47.02

65

-2.79

46.75

No

150

52.40

59

59.98

62.70

76.66

Yes

7

151

57.74

95

43.42

29.29

68.19

Yes

112

152

55.47

75

88.92

80.64

55.50

Yes

68

153

49.38

66

36.85

35.35

11.70

Yes

75

154

55.43

53

35.94

59.33

No

155

48.53

75

94.65

30.11

49.64

Yes

51

156

39.01

63

75.58

62.92

81.99

No

157

42.12

57

78.09

32.68

43.32

No

158

50.42

65.69

No

159

62.35

47

32.76

54.30

75.11

No

160

30.34

-0.36

24.69

65.18

No

161

29.77

95

66.75

38.82

65.99

Yes

110

162

58.23

88

50.05

87.51

Yes

111

163

33.38

44.22

54.62

No

164

34.11

93

84.90

47.10

47.37

Yes

63

165

84

44.09

35.64

37.55

Yes

80

166

32.47

56

24.33

26.96

No

167

50.23

53

37.81

65.21

No

168

51.25

59

28.32

41.67

48.93

Yes

45

169

39.59

53

41.59

38.57

68.18

No

170

18.47

100

51.96

17.76

53.61

Yes

61

171

55.58

79

57.43

53.32

Yes

108

172

27.92

69

40.47

46.90

30.77

No

173

65.96

59

76.42

81.18

68.41

Yes

57

174

15.32

74

35.30

21.90

Yes

92

175

21.77

42.09

33.14

46.36

No

176

50.11

54.68

51.98

46.82

Yes

85

177

53.12

79.02

39.06

102.69

Yes

84

178

33.07

65

68.35

31.98

26.10

No

179

44.02

48

25.56

47.02

50.27

No

180

59

48.18

No

181

34.14

66

60.01

52.32

38.24

No

182

63.65

36

32.01

56.58

75.15

No

183

39.36

72

40.98

52.12

40.56

Yes

96

184

24.37

61

41.80

53.71

53.77

No

185

45.99

80

40.87

63.80

57.63

Yes

97

186

58.75

61

46.78

49.60

No

187

28.12

61

35.49

37.46

51.72

No

188

30.74

54

38.10

44.47

47.92

No

189

53.18

57.18

74.28

55.58

No

190

68.68

39

40.75

101.17

No

191

65

55.75

31.99

Yes

4

192

55.37

52

63.29

67.93

28.97

No

193

24.44

65

62.90

52.61

37.56

No

194

78.36

45

73.22

72.64

46.70

No

195

62.61

44

63.98

No

196

26.78

50

57.36

24.06

25.94

No

197

63

32.33

54.19

46.09

Yes

35

198

24.58

78

28.05

52.48

Yes

41

199

14.31

70

32.16

32.86

12.02

No

200

45.64

70

53.58

42.36

46.34

No

201

47.73

58

73.15

92.16

No

202

46.38

67

43.96

43.94

42.36

Yes

16

203

38.27

42

35.90

28.15

No

204

21.25

83

26.37

28.17

3.89

Yes

49

205

53.68

54

83.73

56.36

76.85

Yes

24

206

64.25

54

77.36

75.80

43.25

Yes

34

207

48.23

26.16

53.33

102.15

Yes

90

208

74.41

70

83.98

32.20

67.78

Yes

74

209

56.67

59

63.98

49.77

61.16

Yes

35

210

62.90

34

39.27

67.22

37.60

No

211

51.47

46

52.72

72.50

81.83

No

212

31.54

70

31.17

28.62

-7.82

No

213

52.01

25

50.38

46.85

No

214

51.87

47

64.56

51.09

No

215

54.54

63

37.24

29.64

48.05

Yes

3

216

54.26

43

42.71

48.02

48.75

No

217

57.77

65

80.31

36.73

31.51

Yes

97

218

72

41.35

Yes

39

219

40.26

61

60.56

69.69

34.82

No

220

65.82

45

71.32

69.28

61.03

Yes

20

221

51.61

44

47.23

18.40

58.11

No

222

31.29

96

68.05

36.76

Yes

107

223

61.45

52

49.83

39.04

Yes

31

224

52

84.34

66.41

No

225

23.09

76

13.63

67.67

59.78

Yes

43

226

44.37

50

41.36

33.86

82.89

No

227

21.94

75

46.01

47.43

46.54

Yes

16

228

39.73

94

57.75

33.46

74.96

Yes

93

229

59.96

52

62.49

54.93

55.48

No

230

30.64

41.39

20.50

32.62

No

231

39

67.75

55.17

No

232

35.42

41

36.15

45.17

24.83

No

233

42.75

78.94

90.41

46.58

No

234

40.02

65

78.43

57.43

43.80

No

235

48.55

42

51.69

46.51

62.44

No

236

46.08

50

79.18

58.02

33.87

No

237

36.29

61

24.71

16.77

No

238

39

49.19

55.15

45.53

No

239

30.99

73

52.00

46.03

49.52

No

240

49.54

71

57.58

74.35

63.51

Yes

63

241

62.66

67.35

40.48

67.04

Yes

83

242

22.29

52

19.83

43.12

49.53

No

243

15.29

91

36.67

34.90

34.11

Yes

85

244

34.06

64

23.42

45.62

21.46

No

245

61.44

51

60.97

63.91

No

246

13.55

72

39.98

7.97

18.06

No

247

32.56

60

50.82

31.20

23.92

No

248

47.18

83

72.46

51.23

Yes

114

249

28.38

54

38.67

60.85

25.06

No

250

58.83

35

62.93

59.93

67.27

No

251

49.07

56

45.34

84.51

73.01

No

252

39.89

75

44.82

36.68

68.74

Yes

55

253

66.57

50

49.63

58.99

No

254

38.74

71

42.30

61.87

No

255

12.21

81

20.25

27.91

Yes

7

256

53.75

59

63.41

68.44

Yes

12

257

38.06

66

82.65

59.90

No

258

37.15

66

28.61

62.23

60.39

Yes

34

259

49.84

62.38

70.38

66.75

No

260

63

52.93

38.09

52.44

Yes

33

261

40.07

74

64.34

33.94

10.39

Yes

78

262

74

26.59

0.54

76.58

Yes

86

263

42.71

30.13

36.57

Yes

11

264

60.48

54

71.14

76.26

No

265

18.90

70

43.80

65.63

62.46

No

266

47.25

55

14.07

31.57

43.45

No

267

29.45

97

37.04

33.48

47.37

Yes

116

268

38.24

68

54.78

74.46

35.58

Yes

7

269

69.62

75

84.78

71.78

Yes

112

270

54.19

46

60.94

40.39

38.42

No

271

44.33

66

42.58

29.16

47.49

Yes

55

272

55.61

74

44.13

45.16

48.81

Yes

97

273

44.20

48

38.53

39.87

62.34

No

274

36.69

59

26.06

48.20

57.04

No

275

44.58

41

28.61

65.46

74.48

No

276

14.36

58

39.20

13.95

50.76

No

277

40.90

64

43.08

53.76

30.49

No

278

56.72

46

87.47

68.86

No

279

24.47

71

35.98

23.78

32.29

No

280

40.31

84

41.51

21.15

26.72

Yes

71

281

45.57

41

35.69

58.45

No

282

85.55

54.64

69.15

Yes

7

283

55.26

62

60.68

41.41

Yes

58

284

35.95

39

46.22

51.73

24.88

No

285

34.33

59

40.44

75.95

No

286

39.57

49

44.85

57.73

No

287

32.82

56

39.13

3.41

-12.98

Yes

14

288

50.42

74

46.13

88.88

Yes

116

289

86.01

41

95.29

62.08

No

290

38.51

80

43.62

36.67

59.20

Yes

35

291

55.37

71

79.86

34.67

64.83

Yes

17

292

60.98

33

24.89

28.73

No

293

80

60.29

48.91

76.40

Yes

52

294

4.80

20.98

14.68

No

295

59

52.04

60.18

48.20

No

296

40.41

54

68.91

41.40

68.87

No

297

46.64

73

49.71

54.23

52.66

Yes

12

298

29.64

65

56.66

37.50

22.55

No

299

46.51

69

49.98

57.72

35.26

Yes

112

300

77.77

51.80

80.32

No

301

33.94

53

36.12

52.13

68.74

No

302

25.12

55

33.00

29.15

61.56

No

303

42.15

75

65.54

49.33

35.76

Yes

74

304

43.99

40

44.45

30.54

36.23

No

305

49.08

68

64.18

40.37

Yes

69

306

45.55

40

48.98

50.43

52.32

No

307

53.57

56

49.48

43.20

24.66

No

308

29.63

73

33.80

32.90

41.42

Yes

32

309

75.86

16

63.15

63.63

No

310

28.91

79

49.41

81.09

Yes

101

311

49.04

68

75.19

34.81

41.76

Yes

50

312

62.00

20

68.79

58.56

No

313

67.47

72.89

76.36

38.23

No

314

36.24

70.95

Yes

97

315

31.28

77

43.32

49.15

36.31

Yes

11

316

30.62

62

55.50

50.96

76.11

No

317

49.78

76.83

Yes

31

318

50.15

37.27

Yes

85

319

68.81

36

55.45

60.44

No

320

69

26.48

35.57

38.51

Yes

77

321

46.75

51

55.96

63.17

No

322

50

67.63

35.55

29.03

No

323

40.58

50

47.87

73.83

No

324

56.87

47

56.77

27.53

56.22

No

325

28.61

64

18.53

36.12

10.48

No

326

59.73

57

57.98

50.81

72.63

Yes

18

327

38.38

43

22.89

42.98

26.62

No

328

38.87

71

41.02

45.88

No

329

39.73

83

49.72

62.61

84.54

Yes

81

330

53.18

43

62.23

37.17

48.00

No

331

24.43

92

63.12

32.01

Yes

102

332

39.15

84

35.34

68.69

70.79

Yes

97

333

50.04

65

45.47

45.21

94.52

Yes

41

334

47.97

56

54.61

26.61

58.08

Yes

13

335

37.16

21.05

40.10

40.33

No

336

27.23

60

46.47

63.59

56.56

No

337

62.17

38

62.32

53.25

93.60

No

338

42.64

39

75.18

77.15

No

339

74.53

64.23

47.18

56.01

Yes

35

340

40.92

51.50

78.60

Yes

80

341

59.96

46

46.78

52.54

39.10

No

342

33.64

57

52.03

40.38

30.84

Yes

2

343

53.48

56

32.58

69.85

61.48

No

344

49.04

64

58.04

71.51

75.26

Yes

64

345

38.72

48

61.16

8.21

No

346

46.06

50

39.14

51.60

42.44

No

347

42.26

83

38.61

54.10

Yes

114

348

57.20

64

79.30

86.13

Yes

43

349

29.21

56

64.72

42.86

50.55

No

350

16.34

69

28.64

52.70

Yes

43

351

36.29

77

39.17

43.92

Yes

110

352

56.06

47

58.79

64.22

61.71

No

353

33.48

60

50.73

34.88

No

354

54.27

61

55.06

56.63

76.19

Yes

15

355

46.88

51

63.89

38.44

70.17

No

356

26.64

77

42.76

31.88

Yes

35

357

67.31

37

33.32

62.72

49.63

No

358

35.00

79

37.36

40.43

35.00

No

359

58.28

58

43.00

46.78

Yes

30

360

87.18

20

66.20

63.61

No

361

40.34

44.30

80.76

71.61

No

362

56.91

59

87.22

56.79

55.64

No

363

50.88

57

75.71

33.28

62.94

No

364

41

39.38

68.15

47.98

No

365

42.16

39

43.62

61.06

54.25

No

366

64

39.69

70.73

47.60

Yes

6

367

23.30

98

21.25

-2.57

46.48

Yes

96

368

63.32

32

61.15

78.67

68.30

No

369

61

59.17

47.05

66.90

Yes

33

370

62.07

31

11.43

52.04

No

371

14.42

78

32.82

28.88

25.04

Yes

46

372

40.10

63

49.87

53.23

45.31

Yes

1

373

31.84

38

9.03

50.09

32.48

No

374

67.59

63

75.54

57.25

86.64

Yes

56

375

16.21

93

33.97

23.63

Yes

106

376

50.52

92

56.78

62.01

62.69

Yes

114

377

34.27

69

57.62

69.48

45.50

Yes

51

378

65.90

55

68.25

67.33

56.67

No

379

34.22

55.63

37.29

58.17

No

380

12.18

67

22.28

39.49

17.71

No

381

16.50

32.55

11.84

-0.68

Yes

83

382

44.99

55

60.82

Yes

31

383

40.13

53

40.73

38.93

47.28

Yes

16

384

23.37

62

45.58

30.43

17.28

No

385

41.37

55

68.48

29.51

No

386

68

47.67

74.81

48.72

No

387

84

51.58

82.60

Yes

59

388

46.62

58

28.60

52.16

No

389

42.82

60

9.01

55.87

9.91

No

390

45.95

11.78

45.40

52.42

Yes

94

391

39.76

83

50.16

52.00

Yes

59

392

48.78

45

63.88

46.54

No

393

42.00

39

51.12

37.38

37.15

No

394

47.34

48

58.57

76.87

41.30

No

395

52.22

58.25

60.22

40.34

No

396

38.35

42

25.41

33.43

36.43

No

397

46.72

79

27.64

44.74

50.68

Yes

116

398

52.67

54.32

39.16

37.54

No

399

64

65.47

58.11

41.14

Yes

24

400

34.59

97

11.67

40.53

53.54

Yes

98

401

28.11

51

44.10

9.55

38.63

No

402

40.70

69

40.74

71.64

Yes

83

403

34.89

45

51.16

50.95

52.19

No

404

40.44

55

44.56

58.43

46.80

No

405

53.16

72

59.88

58.11

Yes

90

406

41

75.87

52.99

56.51

No

407

50.51

53

30.02

57.85

55.61

No

408

24.49

100

40.68

48.68

40.91

Yes

113

409

34.50

53

63.75

14.01

3.69

No

410

56.70

83

90.66

91.40

Yes

70

411

60.04

62

48.39

65.01

60.62

Yes

57

412

38.79

52

56.45

51.22

No

413

52.24

39

79.46

72.47

80.73

No

414

53.10

64

52.69

60.37

69.21

Yes

80

415

51

59.36

63.56

67.29

No

416

63.34

63

72.31

63.10

38.97

Yes

47

417

38

80.86

82.29

91.11

No

418

46.50

79

49.12

39.20

48.53

Yes

53

419

53

61.20

57.84

51.64

No

420

23.23

46

35.59

19.01

31.14

No

421

39.27

44.59

19.72

47.42

Yes

86

422

55.64

53

72.66

69.35

76.53

No

423

65

41.86

47.60

64.37

No

424

29.29

89

64.05

50.70

78.80

Yes

79

425

24.10

78

26.69

27.15

63.49

Yes

42

426

47.12

75

49.46

52.91

42.38

Yes

80

427

50.92

68

65.09

56.15

Yes

33

428

28.95

45.23

50.23

43.02

Yes

15

429

78

32.61

43.33

67.46

No

430

23.29

58

53.62

66.37

No

431

26.76

75

4.26

14.61

Yes

73

432

41.80

59

59.47

66.07

No

433

48.85

64.33

56.95

50.63

Yes

94

434

66.21

41

73.72

86.69

54.79

No

435

37.41

65.63

27.75

No

436

47.56

66

40.34

51.87

Yes

44

437

49

79.51

79.75

79.84

No

438

51.82

45

66.33

39.84

52.07

No

439

66.48

39

80.93

50.21

65.42

No

440

34.32

62

7.62

19.84

51.53

No

441

33.88

65

42.15

15.20

29.08

No

442

62.73

47

49.60

33.87

34.45

Yes

1

443

22.45

72

45.11

15.23

31.51

Yes

12

444

67.85

60

44.83

61.91

69.52

Yes

1

445

22.44

100

74.56

29.18

15.40

Yes

97

446

43.83

59

23.01

67.25

88.25

No

447

35.80

50

46.99

44.41

48.01

No

448

39.30

69

58.37

56.16

55.40

Yes

76

449

48.14

56

51.46

65.07

44.89

No

450

44.27

78

51.11

22.56

47.72

Yes

78

451

51.84

76

72.20

66.45

Yes

36

452

49.58

37

41.50

59.37

57.19

No

453

49.13

82

36.62

36.00

Yes

39

454

49.39

78

51.19

58.50

57.25

Yes

110

455

35.90

56

59.42

40.00

52.18

No

456

36.94

58

52.04

71.80

No

457

16.12

76

28.91

40.66

Yes

38

458

86

30.06

26.05

Yes

119

459

24.68

74

-11.18

34.74

-18.04

Yes

75

460

48.27

52

70.27

63.74

55.74

No

461

46.66

38

12.63

42.95

No

462

8.83

80

9.97

29.05

25.78

Yes

47

463

62

47.82

61.84

31.33

No

464

54.48

95

41.10

85.71

70.82

Yes

114

465

51.40

45

58.09

89.56

49.71

No

466

45.79

45

81.12

No

467

37.55

61

48.40

13.12

25.09

No

468

44.64

65

32.97

38.09

37.95

Yes

42

469

75.74

40

70.20

63.40

No

470

43

54.65

71.50

65.66

No

471

39.04

87

58.10

39.45

57.43

Yes

92

472

57.59

63

66.77

83.54

No

473

41.77

52

30.72

36.66

46.61

No

474

58.18

58

84.72

77.23

108.12

No

475

36.99

71

64.94

61.95

22.27

Yes

23

476

56.18

64

75.65

55.72

31.57

Yes

2

477

40

45.06

59.82

59.40

No

478

50.05

65

51.83

55.11

Yes

54

479

55.62

46

36.28

37.75

No

480

18.64

97

77.50

23.75

50.00

Yes

73

481

49.32

85

60.81

71.21

26.46

Yes

82

482

64.40

48

51.86

102.51

80.29

No

483

51.25

66.73

59.44

94.58

Yes

23

484

54.03

43

39.71

79.39

98.94

No

485

37.19

51

37.41

55.21

21.96

No

486

58.75

59.87

37.04

55.08

No

487

42.36

39

32.93

47.46

55.47

No

488

67.22

66

51.76

95.38

66.22

Yes

50

489

42.82

82

77.78

47.70

55.57

Yes

85

490

32.40

39.35

58.92

No

491

46.55

84

65.38

57.47

35.67

Yes

89

492

46.87

67

54.21

55.64

Yes

39

493

50.55

42

61.92

57.38

30.30

No

494

28.94

53

47.82

19.49

31.09

No

495

59.36

40

72.44

60.48

38.95

No

496

39.61

56

57.27

26.61

No

497

21.13

52

45.51

48.95

26.13

No

498

61.47

67.94

58.31

73.59

Yes

11

499

25.88

82

39.69

57.06

Yes

23

500

37.15

62

34.90

65.38

Yes

21

501

34.05

80

26.39

31.15

44.67

Yes

96

502

21.04

100

39.06

40.18

40.08

Yes

91

503

42.08

48

36.44

58.06

56.06

No

504

42.29

75

60.10

38.09

46.85

Yes

78

505

50.62

52

49.16

60.14

73.04

No

506

38.45

94

60.05

52.88

52.51

Yes

110

507

62.45

65

74.88

53.61

62.78

Yes

26

508

60.95

44.75

79.80

Yes

59

509

55.66

65

82.50

69.78

No

510

36.23

62

7.45

36.47

65.16

No

511

23.34

51

40.10

54.24

12.81

No

512

50.43

76.98

42.06

49.62

No

513

64.82

25

71.37

59.79

63.18

No

514

38

63.42

52.90

36.10

No

515

18.44

63

10.63

27.87

11.37

No

516

32.68

58

22.02

8.31

19.80

No

517

58.28

50

91.63

74.01

Yes

4

518

54.20

34.03

65.54

59.84

Yes

52

519

28.98

13.92

25.03

Yes

105

520

55

32.75

49.39

74.44

No

521

100

20.96

6.82

52.10

Yes

110

522

46.80

58

92.67

46.39

No

523

43.49

70

46.91

13.91

57.78

Yes

57

524

45.09

44.44

32.36

60.22

Yes

39

525

-10.07

82

24.08

-4.87

2.44

No

526

48.23

41

29.10

31.19

No

527

38.99

58

81.58

No

528

57.16

70

51.60

70.99

Yes

68

529

30.58

55

13.78

No

530

76.69

48

80.06

70.89

75.11

Yes

47

531

68.44

42

66.76

105.46

54.19

Yes

12

532

69.51

39

53.59

71.52

63.81

No

533

46.45

55

55.40

51.84

59.43

No

534

8.12

96

58.57

-3.27

Yes

63

535

45.34

55

48.62

56.68

No

536

43.83

43

59.31

44.67

38.42

No

537

56.61

42

56.32

39.01

48.71

No

538

41.53

72

54.79

70.51

Yes

10

539

71

41.27

9.86

41.06

No

540

52.56

40

64.59

87.01

No

541

59.51

52

31.31

58.98

Yes

76

542

33.37

59

64.33

49.68

No

543

45.50

49

7.50

55.44

No

544

34.93

10.48

31.23

28.40

No

545

36.85

65

42.34

55.80

30.03

No

546

35.52

52

26.09

48.05

8.47

No

547

39.38

42

32.02

16.95

63.41

No

548

45.62

74.64

68.82

39.80

No

549

35.64

35.76

54.68

60.70

Yes

98

550

6.72

97

-0.24

63.92

39.63

Yes

101

551

77.72

59

78.23

48.06

81.10

Yes

53

552

52.24

39

42.45

61.16

22.44

No

553

57.52

63

47.05

59.91

40.45

Yes

1

554

33.18

77

32.33

52.82

26.11

Yes

38

555

28.27

55

17.44

51.01

52.11

No

556

24.28

67

37.07

61.16

50.41

No

557

21.58

91

38.02

-0.81

51.45

Yes

73

558

53.55

46

74.05

75.04

74.94

No

559

19.36

83

21.21

63.70

Yes

30

560

70

79.52

78.03

Yes

37

561

33.42

64

54.25

29.33

44.35

No

562

46.96

54

45.59

42.89

54.19

No

563

25.43

76

38.51

34.30

Yes

51

564

63.44

62.93

26.60

Yes

100

565

86.76

20

70.06

68.77

61.26

No

566

82.61

59

90.87

63.37

73.64

Yes

62

567

50

42.13

15.25

No

568

52.19

41

70.04

59.82

19.17

No

569

37.63

73

60.85

66.98

Yes

70

570

36.12

71

71.04

71.93

31.05

Yes

19

571

47.45

68

55.74

62.28

64.77

Yes

51

572

60.55

33

32.22

50.70

60.99

No

573

53.79

77.70

48.03

67.41

Yes

39

574

77.95

52

49.90

74.29

No

575

45.83

64

48.60

49.45

61.87

No

576

29.82

53

57.15

18.99

30.95

No

577

54

19.99

20.20

25.45

No

578

43.58

53

63.35

43.57

44.32

No

579

57.53

57

33.06

63.49

45.78

Yes

41

580

20.69

100

44.23

12.22

61.03

Yes

120

581

43.69

86

38.18

62.85

45.48

Yes

111

582

47.66

37.06

47.28

84.47

No

583

63.77

48

83.77

61.77

No

584

54.38

48

37.24

81.83

No

585

73

31.21

39.59

55.62

Yes

38

586

46.68

54

62.02

86.09

76.89

Yes

18

587

37.69

51

18.17

43.17

36.38

No

588

39.13

67

68.47

93.41

63.60

No

589

61.27

53

57.68

33.42

56.15

Yes

76

590

51.18

71

58.08

43.04

44.05

Yes

110

591

45.03

42

56.28

47.68

46.41

No

592

20.40

85

65.47

47.27

48.95

Yes

16

593

54

35.31

51.31

37.43

No

594

38.49

69

59.43

50.15

Yes

32

595

58.36

50

59.76

37.88

54.90

No

596

26.73

47

48.42

38.91

67.63

No

597

33.29

88

47.04

66.21

67.48

Yes

65

598

22.60

9.84

34.05

39.42

Yes

29

599

71.44

118.35

61.88

66.97

No

600

24.58

67

13.54

45.51

49.64

No

601

45.24

77

54.39

56.62

51.33

Yes

109

602

38.34

72.13

24.73

37.26

No

603

28.27

58

49.56

22.84

38.30

No

604

27.75

90

37.68

37.97

42.46

Yes

73

605

50.80

36

67.15

50.64

No

606

36.20

47

50.66

18.17

5.71

No

607

80.52

32

69.96

66.79

71.02

No

608

42.77

57

27.08

31.70

45.31

No

609

51.75

70

77.45

48.86

46.51

Yes

50

610

57.10

56

106.40

70.29

67.57

Yes

38

611

73.48

40

59.49

87.90

77.71

No

612

55.31

46

52.58

31.73

No

613

16.26

96

21.43

Yes

72

614

39.65

80

56.63

12.24

70.78

Yes

82

615

42.70

67

27.93

24.99

No

616

35.84

45

37.52

35.83

38.27

No

617

73.14

70

40.58

Yes

101

618

31.21

83

19.82

34.28

53.73

Yes

23

619

23.61

80

29.87

61.37

54.64

Yes

66

620

52

54.29

40.97

No

621

35.66

79

36.27

23.11

43.82

Yes

62

622

32.63

85

23.52

Yes

105

623

38.22

67

38.65

76.53

No

624

46.96

45

34.00

49.82

42.00

No

625

60.16

37

63.44

58.51

63.06

No

626

38.66

37

33.61

29.93

56.43

No

627

63.56

47

52.76

51.12

53.67

No

628

29.17

52.15

40.89

45.10

No

629

41.46

56

42.36

36.29

53.53

No

630

70

60.49

59.83

Yes

25

631

43.08

31

31.54

55.35

No

632

41.06

79

36.27

63.88

Yes

90

633

45.40

84

49.96

68.44

42.54

Yes

118

634

16.91

72

46.94

44.32

18.45

No

635

28.80

51

19.12

27.38

No

636

67.61

50

87.93

55.46

25.74

No

637

34.05

52.51

75.50

70.49

No

638

32.33

75

34.41

43.69

52.97

No

639

59.98

56

70.35

36.96

79.48

No

640

40.63

49

82.43

50.74

45.46

No

641

26.15

62

31.62

No

642

40.94

49

54.25

61.61

66.77

No

643

58.81

55

69.47

92.07

79.03

Yes

59

644

41.05

37

63.65

-7.51

No

645

82.76

54

88.37

42.47

75.58

Yes

54

646

65.26

53

70.29

71.47

63.94

Yes

55

647

73.54

44

118.22

93.64

77.93

No

648

29.06

65

39.91

41.95

No

649

30.25

68

38.06

61.07

47.55

No

650

31.85

56

44.90

34.95

55.11

No

651

27.72

33.32

No

652

56.19

65

24.60

48.67

67.42

Yes

20

653

62.79

76

61.14

68.94

63.83

Yes

105

654

21.08

77

41.12

59.03

37.60

Yes

41

655

36.77

95

36.46

16.98

33.13

Yes

118

656

73.03

22

59.75

46.58

100.07

No

657

49.43

77

65.89

67.27

45.52

Yes

35

658

60.51

82

57.77

52.44

42.78

Yes

101

659

62.08

41

63.03

83.40

57.78

No

660

41.75

53

37.92

20.90

55.78

No

661

50.22

64

92.81

42.10

44.88

Yes

82

662

43.96

50.26

42.61

-8.38

No

663

45.27

65

71.02

14.37

Yes

38

664

32.99

71

28.95

49.52

No

665

29.21

27.83

34.38

No

666

40.36

78

54.67

20.54

Yes

116

667

29.02

36.68

47.08

20.69

Yes

117

668

51.48

80

95.53

16.25

24.98

Yes

90

669

58.18

52

86.01

86.99

Yes

1

670

39.64

53

48.03

72.47

No

671

31.87

65

62.46

22.01

38.50

No

672

23.47

57

17.55

64.84

55.51

No

673

60.70

50

44.21

37.07

64.32

No

674

52.57

55

73.49

62.67

72.53

No

675

32.68

71

38.99

29.67

55.58

No

676

54.74

43

49.37

91.52

48.50

No

677

52.60

40

67.52

63.05

79.41

No

678

19.52

69

66.30

24.99

No

679

61.44

71.06

82.54

No

680

47.25

65.06

47.64

23.20

No

681

42.51

69

63.54

44.79

43.75

No

682

53.46

30

52.58

100.77

58.77

No

683

21.33

57

14.72

50.58

38.05

No

684

69.11

47

53.20

46.01

No

685

27.39

77

38.19

34.39

Yes

81

686

50.33

69

73.42

72.84

Yes

57

687

51.72

38

57.16

55.00

62.38

No

688

42.61

46

57.01

52.70

43.55

No

689

71.52

31

66.38

30.95

51.19

No

690

49.14

44

39.00

55.80

No

691

44.97

58

57.38

62.83

No

692

61.46

26

70.54

72.57

No

693

47.28

48

43.74

29.22

No

694

45.12

78

81.04

48.72

63.86

Yes

11

695

76.66

25

79.94

62.58

No

696

52.47

76

55.42

36.39

78.52

Yes

74

697

52.06

70

66.79

34.75

85.28

Yes

99

698

79.35

34

101.89

80.36

58.68

No

699

35.75

60

78.75

51.96

No

700

54.89

69

29.71

64.25

37.25

Yes

47

701

36.36

77

67.99

42.97

31.04

Yes

41

702

31.10

52

45.83

51.46

41.94

No

703

49.47

54

43.23

78.64

75.55

No

704

49.28

38

72.66

26.74

65.26

No

705

47.16

57

67.89

75.92

57.73

No

706

71

79.54

53.10

64.37

Yes

30

707

61.33

63

46.04

63.28

Yes

85

708

66.06

74

78.31

54.83

60.14

Yes

110

709

34.33

39

36.85

37.26

No

710

50.78

41

50.76

61.24

46.99

No

711

38

37.53

63.93

53.89

No

712

13.97

55

17.10

39.19

24.29

No

713

60.92

73

52.89

67.62

19.59

Yes

107

714

42.49

78

55.56

55.18

68.89

Yes

70

715

36.27

59

48.74

38.65

29.55

No

716

67.33

85

49.40

45.54

Yes

112

717

30.35

72

18.96

33.54

Yes

34

718

47.82

65

57.95

No

719

39.38

71

73.39

70.95

Yes

109

720

47.12

50

71.14

75.31

63.72

Yes

9

721

66

32.35

35.70

71.10

Yes

41

722

23.32

81

39.94

22.91

25.97

Yes

60

723

64.29

61.14

44.94

47.56

Yes

116

724

35.99

92

52.41

34.46

55.92

Yes

66

725

28.53

55

33.98

50.56

58.87

No

726

33.17

62

17.57

41.71

22.42

No

727

37.23

54

33.39

47.42

38.52

No

728

57.81

52

66.68

73.45

56.43

No

729

68.18

49

88.67

59.39

22.51

No

730

61.43

26

44.50

63.37

No

731

51.27

60

14.31

53.41

66.42

Yes

6

732

41.67

48

49.05

57.12

45.77

No

733

37.37

63

33.53

45.74

55.41

Yes

16

734

48.99

60

28.76

83.26

Yes

58

735

78

45.25

64.81

62.33

Yes

88

736

23.92

68

37.79

49.31

38.91

Yes

36

737

57

34.74

65.83

Yes

30

738

50.66

76

69.70

58.46

52.34

Yes

84

739

33.42

55

49.28

11.99

46.26

No

740

54.51

50

41.89

48.29

50.29

No

741

47.06

31

43.81

80.62

No

742

42.62

55

29.04

20.53

10.66

No

743

52.87

55.45

73.70

75.30

Yes

48

744

71.44

52

60.86

79.32

82.20

Yes

78

745

60.12

64

86.64

70.87

100.35

Yes

54

746

37.99

79

26.42

50.86

41.58

Yes

97

747

42.92

76

51.12

72.52

Yes

66

748

39.71

69

45.05

68.05

Yes

72

749

29.30

66

55.06

43.43

48.25

Yes

31

750

62

44.61

66.66

59.09

No

751

69.20

50

58.32

67.27

89.31

Yes

48

752

64.47

35

64.04

71.10

101.72

No

753

45.56

52

55.64

38.86

72.50

No

754

39.11

96

65.89

Yes

115

755

76.37

27

67.19

94.41

83.34

No

756

50.51

71

46.06

43.06

40.34

Yes

60

757

18.11

75

41.09

49.87

56.47

No

758

75

18.08

61.93

16.20

Yes

24

759

51.20

71

60.59

22.46

53.58

Yes

73

760

55.42

45

34.74

58.94

35.52

No

761

43.71

70

33.48

23.42

Yes

40

762

42.39

56

40.95

40.70

69.88

Yes

12

763

51.16

80

58.65

40.82

49.80

Yes

101

764

44

34.97

45.32

No

765

42.05

68

68.33

31.12

14.69

No

766

38

42.98

78.68

43.59

No

767

63.88

53

53.76

62.22

44.88

No

768

58.29

49

74.22

50.34

No

769

51.12

68

57.38

60.95

76.67

Yes

22

770

50.18

47

50.94

38.16

39.11

No

771

17.99

73

24.68

27.12

Yes

59

772

51.61

76

48.34

68.90

77.23

Yes

95

773

21.95

60

27.89

80.51

66.87

No

774

58.38

77

71.03

55.98

67.18

Yes

12

775

30.77

49.24

25.11

No

776

33.32

60

83.50

26.62

67.40

No

777

64.42

36

24.59

19.45

No

778

30.83

75

40.92

34.71

65.77

No

779

45.15

61

79.70

70.55

56.19

Yes

53

780

52

48.71

40.41

67.84

No

781

49.90

60

59.21

65.41

33.42

Yes

6

782

33.20

87

60.92

35.19

27.94

Yes

87

783

65.07

55

96.42

50.27

54.89

No

784

49.91

74

69.93

58.76

Yes

99

785

41.02

53

25.47

36.63

Yes

48

786

51.12

43

42.53

60.58

No

787

68.78

46

46.13

53.34

65.36

Yes

28

788

45.81

57

41.34

63.79

36.89

Yes

67

789

46.26

50

37.51

74.25

52.20

No

790

23.85

61

32.09

15.15

19.69

No

791

47.33

75

64.90

50.60

Yes

111

792

34.21

74

43.79

60.64

No

793

22.78

97

25.24

28.74

Yes

77

794

51.51

40

30.45

65.53

No

795

44.90

61

59.94

63.94

23.66

No

796

42.92

71

69.56

60.80

77.99

Yes

82

797

60.31

45

57.77

109.41

90.33

No

798

63

64.75

68.95

68.71

No

799

53.57

72

45.08

38.89

52.23

Yes

49

800

57.18

64

51.93

72.38

69.47

Yes

66

801

34.73

66

23.23

57.28

38.67

Yes

99

802

30.78

93

34.84

41.96

44.48

Yes

101

803

34.10

39.13

38.61

No

804

39.84

100

45.11

33.12

85.14

Yes

113

805

62.10

50

35.28

112.69

58.01

No

806

42.09

56

53.84

32.89

81.17

No

807

51.91

69.14

56.18

Yes

16

808

34.46

44

57.93

39.16

26.37

No

809

31.96

75

60.59

12.67

18.70

No

810

47.80

43.88

38.80

37.74

No

811

63.72

51

48.60

47.71

97.06

No

812

24.39

97

33.97

-2.75

45.63

Yes

114

813

23.91

54.26

21.11

37.91

No

814

48.41

46

71.85

35.50

29.28

No

815

71.94

37

91.73

75.78

No

816

47.13

64

86.13

65.60

No

817

54.30

56.20

35.23

No

818

42.01

46

18.93

48.56

41.89

No

819

50.68

56.23

58.53

92.07

No

820

32.79

72

24.35

-12.33

-22.81

Yes

114

821

45.58

67

104.32

93.99

Yes

22

822

52.16

91

42.04

42.48

70.80

Yes

111

823

41.96

81

45.02

55.21

64.50

Yes

89

824

52.76

55

60.09

No

825

38.16

55

59.50

63.38

49.06

No

826

63

36.85

39.74

42.40

No

827

47.75

54

50.62

81.87

60.25

No

828

74.20

47

94.67

80.26

63.71

No

829

47.15

68

47.66

60.12

34.69

Yes

47

830

51.47

39

58.64

48.01

38.31

No

831

47.51

38

43.69

48.21

55.55

No

832

35.50

61

43.42

40.02

37.82

No

833

44.19

48

65.02

54.04

32.66

No

834

52.75

38

43.46

40.03

No

835

76.38

42

88.82

86.64

57.26

No

836

55.07

48

40.11

75.13

84.20

No

837

53.96

51

43.40

37.06

43.07

Yes

27

838

52.16

33

50.93

71.09

40.11

No

839

31.38

43

27.98

58.84

21.99

No

840

45.85

63

58.96

72.12

70.59

No

841

40.21

57

62.57

31.85

21.76

No

842

42

63.90

69.18

42.73

No

843

51.03

54

65.25

57.87

80.66

No

844

39.63

55

70.83

51.78

50.33

No

845

30.60

75

45.38

56.26

Yes

91

846

50.47

57

71.50

62.85

76.34

No

847

64.21

50

77.98

44.56

53.77

No

848

62.69

31

61.32

73.60

66.42

No

849

22.73

72

27.22

54.69

29.83

No

850

20.34

63

36.69

33.52

59.43

No

851

29.40

54

57.43

97.94

60.45

No

852

28.99

86

48.46

26.91

57.13

No

853

51.73

60

56.82

56.44

44.59

Yes

21

854

51

80.93

40.97

86.44

Yes

3

855

43.50

82

68.67

32.85

28.37

Yes

96

856

65.12

72

69.39

47.31

35.22

Yes

82

857

12.48

26.26

50.71

No

858

46.98

86

81.22

25.11

53.97

Yes

103

859

21.11

61

38.20

53.19

13.54

No

860

58.52

38

48.93

61.51

54.76

No

861

43.14

58

73.09

30.75

No

862

43.31

76

49.89

39.04

42.28

Yes

100

863

43.91

83

70.01

34.81

Yes

67

864

43.72

80

45.93

50.26

43.18

Yes

112

865

46.55

31

38.94

66.93

41.95

No

866

34.29

77

26.31

35.72

98.41

Yes

25

867

40.84

49

43.27

34.63

2.83

No

868

46.69

47

20.53

28.07

49.62

No

869

50.56

62

71.19

41.46

No

870

26.00

86

32.79

50.42

6.62

Yes

94

871

25.66

85

59.86

50.48

Yes

50

872

54.21

50

76.29

27.52

73.73

No

873

20.68

100

47.18

49.06

62.85

Yes

107

874

43.55

48

46.26

73.94

No

875

28.81

73

49.55

60.71

Yes

50

876

48.94

60

80.76

67.52

Yes

21

877

51.70

30

55.17

78.54

No

878

40

27.09

18.16

40.67

No

879

46.41

60

43.88

-0.34

53.95

No

880

51.15

68

74.47

74.91

43.07

Yes

49

881

53.33

49

74.35

49.62

67.63

No

882

21.64

83

12.50

Yes

53

883

17.67

100

5.11

29.09

Yes

88

884

68

65.71

58.07

62.90

Yes

53

885

65.36

59

57.17

69.24

Yes

51

886

63

-13.78

1.78

No

887

54.16

52

16.11

31.45

No

888

41.51

61

59.64

26.19

57.13

No

889

48.84

39

52.10

47.32

43.01

No

890

22.09

84

32.44

21.71

38.26

Yes

54

891

31.73

66

72.54

48.57

Yes

7

892

31.41

52

24.57

23.84

33.27

No

893

51.63

78

77.48

29.61

50.65

Yes

81

894

52.77

34.33

No

895

54.20

33

75.17

62.10

No

896

25.32

54

40.10

57.88

56.89

No

897

32.07

72

25.51

40.98

28.24

Yes

38

898

31.80

79

55.38

61.39

Yes

64

899

17.34

92

16.20

45.91

39.11

Yes

60

900

8.67

92

29.49

Yes

76

901

28.84

80

43.08

29.22

Yes

81

902

35.48

70

35.21

58.59

No

903

53.47

54

59.65

35.65

43.04

No

904

53.21

75.10

56.61

35.72

No

905

8.66

83

3.48

25.62

31.12

Yes

104

906

71.49

43

101.70

98.65

86.64

No

907

31.35

94

47.25

52.95

Yes

31

908

45.92

46

68.29

No

909

49.11

69

36.09

60.25

37.45

Yes

117

910

58.31

54

75.98

70.68

75.50

Yes

31

911

50.98

53

45.43

59.35

28.15

Yes

41

912

50

18.42

55.66

69.16

No

913

32.36

64

43.78

40.36

8.78

No

914

48.33

61

41.74

57.11

19.83

Yes

10

915

22.85

69

22.98

35.49

47.70

No

916

55.31

54

47.47

79.95

63.51

No

917

49.77

48

40.50

76.97

33.78

No

918

36.40

26.21

73.43

44.41

No

919

42.30

65

47.74

32.82

56.39

Yes

55

920

57.21

52

79.69

47.35

51.20

No

921

37.76

84

28.79

21.34

25.90

Yes

106

922

60.19

58

63.33

63.29

Yes

53

923

57.99

42

52.66

83.25

87.60

No

924

43.52

49

20.99

18.20

No

925

49.77

64

23.73

42.31

42.74

No

926

27.72

48.82

47.54

16.99

No

927

67.48

30

46.67

77.29

56.84

No

928

34.72

65.21

70.93

35.24

No

929

51.11

63

77.66

Yes

51

930

35.68

84

43.27

9.27

59.35

Yes

68

931

23.18

52

35.35

50.46

61.12

No

932

35.37

23.01

20.80

63.13

Yes

3

933

17.00

86

46.11

48.99

43.90

Yes

41

934

83

68.20

56.42

Yes

71

935

31.45

49

24.99

53.11

70.33

No

936

75.58

44

81.46

86.70

59.26

No

937

26.14

82

18.64

72.79

43.78

Yes

22

938

44.25

83

27.00

67.74

2.71

Yes

101

939

46.83

87

65.25

89.10

40.33

Yes

86

940

65.35

75

70.77

92.66

82.99

Yes

112

941

52.96

53.74

83.14

85.87

No

942

46

70.88

63.22

No

943

17.00

66

34.95

14.23

No

944

49.98

51

34.83

67.21

41.92

Yes

0

945

66.38

39

45.32

84.36

67.07

No

946

32.90

82

40.80

Yes

33

947

57.14

76

86.11

93.03

Yes

69

948

53.22

40

45.00

64.21

46.09

No

949

23.20

88

57.28

43.41

8.04

Yes

108

950

38.64

86

39.14

67.82

64.18

Yes

91

951

22.63

75

39.16

48.73

Yes

61

952

13.85

21.80

35.21

20.60

No

953

73.19

57

62.85

66.54

59.80

Yes

59

954

62.64

54.93

83.91

Yes

38

955

58.62

53

73.07

47.72

67.34

Yes

76

956

66

20.28

57.23

No

957

44.05

72

37.58

36.28

Yes

79

958

36.43

39.26

28.57

No

959

27.72

58

47.41

17.05

30.24

Yes

25

960

41.37

54

28.76

48.03

17.48

No

961

24.74

98

46.57

38.45

30.69

Yes

117

962

42.78

40

53.25

31.23

58.20

No

963

46.74

67

55.41

78.52

60.70

Yes

27

964

48.87

39

79.15

45.70

No

965

38.59

62

44.88

44.90

Yes

27

966

23.46

66

42.90

14.13

20.59

No

967

33.10

75

26.92

1.69

39.08

Yes

57

968

72.72

64

79.11

85.59

65.70

Yes

93

969

63.50

38

92.31

50.44

38.90

No

970

35.53

38

33.74

10.19

37.36

No

971

69.18

41

66.13

63.45

57.58

No

972

55

79.29

66.86

73.53

Yes

109

973

44.40

60

61.63

23.69

34.00

No

974

21.33

64

40.42

3.96

32.14

No

975

20.48

63

28.20

8.70

28.79

No

976

70

32.46

45.35

44.45

Yes

70

977

56

45.98

51.59

23.35

Yes

32

978

34.07

60

45.27

42.31

40.57

No

979

45.09

77

23.60

54.10

70.31

Yes

82

980

96.50

22

70.82

93.91

121.89

No

981

89

18.07

46.72

61.29

Yes

73

982

45.51

82

76.71

63.99

30.63

Yes

65

983

36.22

58

43.59

31.03

No

984

52.21

24.69

87.20

62.42

No

985

50.53

84

83.32

79.97

69.51

Yes

95

986

35.68

44.50

20.44

Yes

44

987

31.24

74

47.04

70.31

No

988

1.80

73

4.45

0.42

No

989

44.26

51

15.66

21.44

62.22

No

990

32.43

54

47.58

47.36

9.19

No

991

32.53

54

31.85

51.49

34.32

Yes

10

992

71.86

33

50.15

46.11

63.53

No

993

43.27

82

65.14

47.14

Yes

116

994

33.07

40

42.48

8.33

51.83

No

995

28.13

81

30.73

44.68

30.40

Yes

33

996

28.25

84

36.84

70.62

Yes

81

997

61.45

54

65.66

62.73

No

998

18.28

11.45

29.48

No

999

52

70.91

68.09

65.06

No

1,000

42

59.62

65.34

47.25

No

Step 3: Visualize Missing Data

To better understand the pattern of missing data, we can use the vis_miss() function from the naniar package:

Code
# Visualize missing data
naniar::vis_miss(data %>% 
                   arrange(prm_sub) %>% 
                   select(-id), sort_miss = T) +
  ggplot2::theme_minimal() +
  ggplot2::theme(
    axis.text.x.top =
      ggplot2::element_text(
        angle = 45,
        hjust = 0.1,
        vjust = 0.1
      )
  )

With approximately 15% of data missing, multiple imputation is warranted (Jakobsen et al. 2017). However the data exhibits two distinct patterns of missingness:

  1. Structured missingness: The premium_duration variable contains values only for premium subscribers, clearly relating to subscription status.

  2. Ambiguous missingness: Other variables like satisfaction and service_reliability show less clear patterns, potentially falling into one of three categories (Bhaskaran and Smeeth 2014):

    • MNAR (Missing Not at Random): Missingness is related to the unobserved values themselves.

    • MAR (Missing At Random): Missingness is related to other observed variables but not to the missing values themselves.

    • MCAR (Missing Completely At Random): Missingness is unrelated to any variables.

To determine the type of missingness for these variables, we can employ the mcar_test() function from the naniar package, which helps distinguish MCAR from MAR/MNAR:

Code
naniar::mcar_test(data %>% 
                    select(-id, -prm_dur)) %>% 
  flextable::flextable() %>% 
  flextable::autofit()

statistic

df

p.value

missing.patterns

70.48884

89

0.9259705

24

The results of the mcar_test() (p > 0.05) fail to reject the null hypothesis that the data are MCAR. This finding is valuable as it supports the use of multiple imputation, which is valid under both MCAR and the less stringent MAR assumptions (Sterne et al. 2009). While MCAR is not a necessary condition for multiple imputation, its presence strengthens our confidence in the appropriateness of this technique for our data1.

Step 4: Set Up the MICE Imputation

The mice package uses a predictor matrix to identify variables for imputing missing values. In our data set, premium_duration has structured missingness, with values only for premium subscribers. This characteristic poses significant challenges for imputation. Most critically, the algorithm might incorrectly fill missing values for non-subscribers using premium subscriber data, leading to biased results. Given these risks, we will exclude premium_duration from the imputation process, ensuring our model relies solely on universally applicable variables.

To implement this, we’ll use the quickpred() function2 to create a predictor matrix that omits premium_duration, thereby enhancing the accuracy and relevance of our imputation:

Code
# Create a predictor matrix excluding premium duration
pred_matrix <- mice::quickpred(data, mincor = 0.1, minpuc = 0, exclude = "prm_dur")

# View the predictor matrix
pred_matrix
        id age sat ser_rel vfm pro_var prm_sub prm_dur
id       0   0   0       0   0       0       0       0
age      0   0   1       1   1       1       0       0
sat      0   1   0       1   1       1       1       0
ser_rel  0   1   1       0   1       1       0       0
vfm      0   1   1       1   0       1       0       0
pro_var  0   1   1       1   1       0       0       0
prm_sub  0   0   0       0   0       0       0       0
prm_dur  0   0   1       0   1       0       1       0

Step 5: Specify Imputation Methods

Next, we need to specify the imputation methods for each variable. mice allows you to set different methods for different variables. For example, we can use predictive mean matching (pmm) for continuous variables and logistic regression for binary variables. By explicitly setting the method for premium_duration to an empty string, we ensure that this variable is excluded from the imputation process:

Code
# Specify the imputation methods
method_list <- make.method(data)
method_list["prm_dur"] <- "" # Skip imputation for premium_duration

# View the method list
print(method_list)
     id     age     sat ser_rel     vfm pro_var prm_sub prm_dur 
     ""   "pmm"   "pmm"   "pmm"   "pmm"   "pmm"      ""      "" 

Step 6: Perform Multiple Imputation

Now we are ready to perform the multiple imputation. We can specify the number of imputed data sets we want to create (e.g., 53):

Code
# Perform multiple imputation
imputed_data <- mice(data,
  m = 5, method = method_list, predictorMatrix = pred_matrix, seed = 42,
  printFlag = F
)

# print multiple imputation summary
summary(imputed_data)
Class: mids
Number of multiple imputations:  5 
Imputation methods:
     id     age     sat ser_rel     vfm pro_var prm_sub prm_dur 
     ""   "pmm"   "pmm"   "pmm"   "pmm"   "pmm"      ""      "" 
PredictorMatrix:
        id age sat ser_rel vfm pro_var prm_sub prm_dur
id       0   0   0       0   0       0       0       0
age      0   0   1       1   1       1       0       0
sat      0   1   0       1   1       1       0       0
ser_rel  0   1   1       0   1       1       0       0
vfm      0   1   1       1   0       1       0       0
pro_var  0   1   1       1   1       0       0       0
Number of logged events:  1 
  it im dep     meth     out
1  0  0     constant prm_sub

Step 7: Check Imputed Values

It’s important to check that the imputed values are consistent with the original data distribution. The stripplot() function in the mice package provides a useful visualization for this purpose.

Code
# Select numeric variables excluding 'id' in one step
vars <- data %>%
  select(where(is.numeric), -id) %>%
  names()

# Create stripplots using map for efficiency
stripplots <- purrr::map(vars, ~ {
  mice::stripplot(
    imputed_data,
    as.formula(paste(.x, "~ .imp")),
    pch = 19,
    xlab = "Imputation number",
    cex = 2,
    main = .x,
    cex.axis = 10,
    cex.lab = 3,     
    cex.main = 12    
  )
})

This visual assessment enhances confidence that the imputed data set is reliable for further analysis, as it demonstrates consistency across imputations, shows no implausible values, and maintains the overall structure and relationships present in the original data.

Step 8: Analyze the Imputed Data sets

Now that the imputation is complete, we can analyze the imputed data sets. First we leverage the with() function to apply a linear model to each of our imputed data sets. Then, mice provides a convenient function called pool() to pool the results of each model.

Model 1: Linear regression excluding premium_duration:

Code
# Fit the first model
model <- with(imputed_data, lm(sat ~ age + ser_rel + vfm + prm_sub + pro_var))

# Pool the results
pooled_results <- pool(model)

# Summary of the pooled results
broom::tidy(pooled_results, conf.int = TRUE) %>% 
  filter(term != "(Intercept)") %>% 
  select(term, estimate, std.error, statistic, dfcom, conf.low, conf.high,p.value) %>% 
  mutate(p.value = format.pval(p.value, digits = 2)) %>%
  mutate(across(is.numeric, round,2))
        term estimate std.error statistic dfcom conf.low conf.high p.value
1        age    -0.62      0.03    -20.43   994    -0.68     -0.56 < 2e-16
2    ser_rel     0.14      0.03      5.09   994     0.08      0.19 5.3e-05
3        vfm    -0.03      0.02     -1.44   994    -0.07      0.01   0.151
4 prm_subYes    18.77      0.71     26.28   994    17.36     20.17 < 2e-16
5    pro_var     0.04      0.02      1.84   994     0.00      0.08   0.067

Model 1 examines all subscribers. It finds that age has a significant negative effect of -0.62 (p < 2e-16), indicating that satisfaction decreases as age increases. Service reliability (ser_rel) exhibits a significant positive effect of 0.14 (p = 4.1e-11), suggesting that greater reliability is linked to higher satisfaction. Furthermore, premium subscription (prm_subYes) demonstrates a positive effect of 18.66 (p < 2e-16), highlighting its strong impact on satisfaction.

Model 2: Linear regression including premium_duration variable:

Code
# Fit the second model
model2 <- with(imputed_data, lm(sat ~ age + ser_rel + vfm + prm_dur + pro_var))

# Pool the results
pooled_results2 <- pool(model2)

# Summary of the pooled results
broom::tidy(pooled_results2, conf.int = TRUE) %>% 
    filter(term != "(Intercept)") %>% 
  select(term, estimate, std.error, statistic, dfcom, conf.low, conf.high, p.value) %>% 
  mutate(p.value = format.pval(p.value, digits = 2)) %>%
  mutate(across(is.numeric, round,2))
     term estimate std.error statistic dfcom conf.low conf.high p.value
1     age    -0.60      0.04    -13.54   428    -0.69     -0.51 < 2e-16
2 ser_rel     0.12      0.04      3.36   428     0.05      0.19  0.0026
3     vfm    -0.02      0.04     -0.59   428    -0.10      0.05  0.5625
4 prm_dur     0.18      0.02     11.27   428     0.15      0.22 2.3e-12
5 pro_var     0.03      0.03      1.03   428    -0.03      0.09  0.3067

Model 2 focuses exclusively on premium subscribers. In this model, age and service reliability remain significant factors influencing satisfaction. Furthermore, premium subscription duration (prm_dur) demonstrates a significant positive effect of 0.19 (p < 2e-16), suggesting that longer subscription periods are linked to higher levels of satisfaction.

Final thoughts

Multiple imputation using the mice package in R offers a robust solution for handling missing data. By customizing predictor matrices and imputation methods, we can address complex data structures while avoiding bias from irrelevant variables. This approach accounts for uncertainty in missing data, leading to more reliable statistical inferences and trustworthy conclusions. Happy analyzing!

References

Azur, Melissa J., Elizabeth A. Stuart, Constantine Frangakis, and Philip J. Leaf. 2011. “Multiple Imputation by Chained Equations: What Is It and How Does It Work?” International Journal of Methods in Psychiatric Research 20 (1): 40–49. https://doi.org/10.1002/mpr.329.
Bhaskaran, Krishnan, and Liam Smeeth. 2014. “What Is the Difference Between Missing Completely at Random and Missing at Random?” International Journal of Epidemiology 43 (4): 1336–39. https://doi.org/10.1093/ije/dyu080.
Buuren, Stef van, and Karin Groothuis-Oudshoorn. 2011. Mice: Multivariate Imputation by Chained Equations in r” 45: 1–67. https://doi.org/10.18637/jss.v045.i03.
Jakobsen, Janus Christian, Christian Gluud, Jørn Wetterslev, and Per Winkel. 2017. “When and How Should Multiple Imputation Be Used for Handling Missing Data in Randomised Clinical Trials a Practical Guide with Flowcharts.” BMC Medical Research Methodology 17 (1). https://doi.org/10.1186/s12874-017-0442-1.
Sterne, J. A C, I. R White, J. B Carlin, M. Spratt, P. Royston, M. G Kenward, A. M Wood, and J. R Carpenter. 2009. “Multiple Imputation for Missing Data in Epidemiological and Clinical Research: Potential and Pitfalls.” BMJ 338 (jun29 1): b2393–93. https://doi.org/10.1136/bmj.b2393.

Footnotes

  1. Multiple imputation relies on several key assumptions. The primary assumption is that data are Missing At Random (MAR), meaning that the probability of missingness depends only on observed data, not on unobserved data. A stronger assumption is that data are Missing Completely At Random (MCAR), where missingness is unrelated to both observed and unobserved data. Both MAR and MCAR are valid scenarios for multiple imputation, with MCAR being a special case of MAR. Other important assumptions include proper specification of the imputation model, congeniality between the imputation and analysis models, and a sufficiently large sample size. While multiple imputation is robust to some violations of these assumptions, it’s crucial to carefully consider them when applying the method. For a comprehensive discussion, see (Sterne et al. 2009).↩︎

  2. The quickpred() is a helper function that calculates correlations between variables and uses these correlations to determine which variables are most relevant as predictors for each incomplete variable.↩︎

  3. Using 5 imputed data sets was done for example purposes. Typically a higher number of imputations are recommended (Azur et al. 2011).↩︎